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The mean flow and turbulent statistics obtained from the numerical simulation of the 
fully developed turbulent flow through a straight duct of square cross-section are 
reported. The Reynolds number based on the bulk velocity and hydraulic diameter 
is 4410. Spatial and temporal approximations of the equations of motion were 
derived from standard finite-difference techniques. To achieve sufficient spatial 
resolution 16.1 x lo6 grid nodes were employed. Turbulent statistics along the wall 
bisectors show good agreement with plane channel data despite the influence of the 
sidewalls in the former flow. The mean secondary flow field consists of two counter- 
rotating cells symmetrically placed about the corner bisectors with their common 
flow towards each corner with strong evidence for the existence of a smaller and 
much weaker pair situated about the wall bisectors. The mean streamwise vorticity 
of each corner cell is found to be associated with a stronger vorticity distribution of 
the opposite sign having an absolute maximum on the nearest duct wall. 

1. Introduction 
The turbulent flow field in the vicinity of a smooth corner is subjected to a 

remarkable structural change that results in, for most values of the angle, a mean 
velocity field in planes perpendicular to its boundaries. Prompted by the 
measurements in ducts of rectangular and triangular cross-section of Nikuradse (see 
Schlichting 1979, p. 612), Prandtl was first to recognize the distinct origins of such 
flows which are now commonly referred to as secondary flows of Prandtl’s second 
kind. Secondary flows of Prandtl’s first kind arise from the skewing of the mean 
cross-stream vorticity and the associated secondary velocities are generally much 
stronger than those induced by turbulence (Bradshaw 1987). 

Complete information on such flows is believed to be available, in principle, from 
the full Navier-Stokes equations together with the appropriate boundary conditions. 
The Reynolds-averaged form of these equations has been used to highlight aspects 
of the secondary flows of the second kind as well as to guide experimental and 
modelling work (for a review see Demuren & Rodi 1984). The appearance of unknown 
correlations in the ensemble-averaged equations limits their usefulness as a source of 
information although they may serve as a check on the consistency of models. Some 
of this information is, however, accessible through direct numerical simulation. The 
present paper reports on the results of a simulation of the fully developed turbulent 
flow through a straight duct of square cross-section at a low Reynolds number. 
Although duct flows are common in practice, the effects of the corners on the 
turbulence is of wider practical interest. 

The difference in the Reynolds number between the simulated flow and most 
experiments (see Demuren & Rodi 1984) is quite large, one order of magnitude or 
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more, but it appears likely that the mechanisms driving the corner secondary flows 
at  disparate Reynolds numbers are similar. The present results ($6 below) also show 
that the terms of the equation for the mean streamwise vorticity attain their largest 
values in regions where viscous effects on turbulence are significant; an associated 
result concerning the importance of anisotropy in the viscous dissipation rate was 
published by Speziale (1986). The existence of such regions is assured for all 
laboratory Reynolds numbers. However, in plane channel flows at low Reynolds 
numbers, the influence of one wall has been found to extend to the vicinity of the 
other (Wei & Willmarth 1989; Teitel & Antonia 1990). For square duct flows, this 
influence would be modified by the events that make up the secondary flows -which 
are themselves an example of the opposite wall interaction - and are present a t  
higher turbulent Reynolds numbers. 

A detailed description of the nature of the secondary flows in corners would require 
understanding the turbulent field that causes them. As a first step towards this goal, 
a number of turbulence statistics in a square duct are documented below, which also 
reveal the importance of the flow field in the vicinity of the walls close to each corner 
- an area previously overlooked. The simulation results are compared with 
experimental data and spectral simulation results from plane channel flows. The 
numerical method used in the simulation is described in $ 2. The different constraints 
on the choice of the Reynolds number are described in $3  together with the coarse 
grid tests that were necessary since experimental data at  low Reynolds numbers are 
scarce. The mean velocity field is three-dimensional with the streamwise component 
being dominant. The simulation results are presented in $4. Comparisons with plane 
channel flows in $5 are made with data from the duct wall bisectors only. Additional 
comparisons with recent measurements in square ducts a t  low Reynolds number are 
also made. The computed terms of the equation for the mean streamwise vorticity 
are presented in $6, followed by the concluding $7.  

2. Numerical method 
In an Eulerian frame of reference, the mathematical form of the forcemomentum 

balance for a constant-property incompressible Newtonian fluid at  a point in space 
is given by the Navier-Stokes equation: 

and the continuity equation, 

where the summation convention applies over the repeated subscripts, p is the 
kinematic pressure, v the kinematic viscosity and Fi represents an external force 
term. For the present computational study it is assumed that the fluid fills a 
rectangular domain bounded by four plain solid walls arranged in two parallel pairs, 
and two flow-through sides as shown in figure 1 (a). In the direction normal to the two 
open boundaries the mean flow is non-zero and it is designated the streamwise 
direction x. The direction parallel to the y-axis will be referred to as the normal 
direction and that parallel to the z as the spanwise direction. The origin of the axes 
system is a t  point A. The two wall bisectors divide the duct cross-section into four 
quadrants; the one closest to the axes origin will be referred to as the first quadrant. 
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FIGURE 1. (a) Axes system, geometry and notation for the square duct flow. (b )  Finite-difference 
cell showing the positions where the flow variables are defined. 

Other definitions are given on figure l ( a ) .  To avoid having to specify inflow and 
outflow conditions at the open boundaries, it is also assumed that the instantaneous 
flow field is periodic along the streamwise direction. This artifice is compatible with 
the fully developed duct flow provided that the streamwise extent of the 
computational domain is sufficient to ensure the spatial decorrelation of the 
turbulent statistics within it. The Ft term is taken as the mean part of the pressure 
gradient field which is used to drive the flow by setting its streamwise component to 
a non-zero constant. 

The spatial approximation of (1) and (2) is obtained by a second-order finite- 
difference method applied to the staggered grid arrangement shown on figure 1 ( b ) .  
Equations for the grid-averaged velocity components are obtained by integrating 
each momentum equation over a grid volume surrounding the point on which each 
velocity component is defined. The continuity equation is averaged over the grid 
volume surrounding the pressure node. The technique is essentially that of Schumann 
(1975) and it is therefore not reproduced here. It differs from Schumann’s in that the 
present implementation can accommodate non-uniform grids in both cross-stream 
(y, z )  directions, and in that the subgrid terms are neglected. 
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The formal accuracy of spatial discretization is second order for uniformly 
distributed grid points. This convergence rate is maintained for non-uniform grids 
when the rate of change of grid spacing along each direction is sufficiently smooth, 
albeit with an increase in the absolute value of the truncation error. This has been 
confirmed by computing the laminar flow profile through a straight square duct for 
which the analytical solution is known. For the computations reported below, the 
changes in the size of neighbouring grids is always below 6%, which is found to be 
well within the radius for second-order convergence. The error terms due to the 
various finite-difference approximations were estimated using Taylor series expan- 
sions. The leading terms modifying the equations of motion were found to involve 
higher-order mixed derivatives with grid-dependent numerical factors not exceeding 
6% of the molecular viscosity. 

The discrete form of the advection terms in the momentum equations conserve 
total momentum. In addition, global conservation of the variance of each velocity 
component is also maintained provided that the discrete form of the continuity 
equation about the pressure node is obeyed exactly. In the present calculations, the 
residual in the discrete continuity equation scaled with the mean friction velocity 
and length of the duct side is less than 10-l'. 

The time advancement scheme is similar to the Kim & Moin (1985) adaptation of 
Chorin's fractional step method, which allows the implicit treatment of the viscous 
diffusion terms. Defining 

where 6 is the finite-difference operator, with the superscript n denoting the discrete 
time level, then, using * to denote the intermediate values of the velocity, the field 
variables a t  step n+ 1 are found by 

and 

The auxiliary potential 4 is related to the pressure by 

and is defined on the same nodes as p .  
The streamwise diffusion terms have been treated explicitly because their 

contribution to the time-step stability limit is at least two orders of magnitude above 
that due to the inertial terms. 

The solution of (3) for the provisional velocity requires the inversion of one 
pentadiagonal matrix for each discrete x-station. This can be avoided by using the 
following approximate factorization : 

(l-pz-p+i-u:) 6y2 6z2 x (l-p&)(l-pg)('i-uy), (7) 
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where p = +.At. This reduces the problem to the inversion of two tridiagonal matrices. 
The error term introduced in (7) is of the same order as the time truncation of the 
Crank-Nicholson or Adams-Bashforth schemes. The matrices arising in (7) involve 
unknown boundary values of 4,. These are found by applying (4) to the boundaries 
and using Taylor's expansion in the time variable for approximating the gradient of 
4 to that of the previous time level, thus: 

This procedure has been found to be stable. 
The provisional velocity 4, does not obey continuity. This constraint is implicitly 

enforced by a suitable choice of q5 with subsequent application of (4). An equation for 
4 is derived by taking the divergence of (4) and applying the continuity ( 5 )  for the 
velocity at the next time level, this results in 

which is the discrete analogue of the Poisson equation. This equation is applied to all 
grid cells that are not adjacent to the boundaries. For the latter group of cells, the 
equations arising from the substitution of the internal velocity values in the discrete 
forms of the continuity equation are used (Kim & Moin 1985). 

Expansion of 4 and Q into one-dimensional discrete Fourier series and use of the 
trigonometric orthogonality property allows the transformation of (8) into 

where the tilde denotes the one-dimensional Fourier coefficients and a is the modified 
wavenumber 

sin2 (+K, Ax)  
a2 = 4 

Ax2 ' 

where K, and Ax are the streamwise wavenumber and grid spacing respectively. 
For non-uniform grids, the solution of (9) requires the inversion of a block- 

tridiagonal symmetric matrix for each wavenumber. This is efficiently achieved with 
the use of the extended cyclic reduction algorithm due to Swarztrauber (1974). In  the 
present implementation the solution for all wavenumbers is carried out sim- 
ultaneously. This permits the vectorization of most steps in the solution procedure. 
There is, however, some loss of accuracy in the calculated results due to the slow 
growth of round-off errors. This tendency is inherent in the solution algorithm and 
thus unavoidable. This loss of accuracy (which was quantified above) on the 
computed velocities is thought to be unimportant when compared to the space and 
time truncation errors. The non-slip and periodicity boundary conditions on the 
velocity are enforced with the aid of a set of fictitious grid cells placed outside the 
computational domain. 

The errors in the calculated velocity field of a laminar flow through a straight duct 
of square cross-section have been found to decrease at  a rate proportional to the 
square of the grid size for both uniform and non-uniform grid distribution. However, 
the error found in the computed velocity at the four grid points closest to each of the 
corners tends to be large - about 10% and falling by more than an order of 
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magnitude over the surrounding grid points-even though the error for a fixed 
position in the duct arbitrarily close to the corner always displays convergence. This 
is not thought to be a drawback because in the turbulent case the flow very close to 
the corner, and in particular near the first grid point, is quiescent. The results of the 
driven cavity test were identical to those obtained by Kim & Moin (1985). 

The code was also adapted so that free slip (zero shear stress with no-through flow) 
could be applied to any one of the four solid boundaries. By setting one pair of 
opposite walls to non-slip conditions and the other to free slip, plane Poisseuille flow 
could be simulated. This arrangement was used to calculate the decay rates for two- 
dimensional Tollmien-Schlichting waves up to Reynolds number 2500 (based on the 
mean centreline velocity and channel half-width). For 128 streamwise and 127 
uniformly distributed cross-stream grid intervals (which is the optimum for the 
present numerical scheme), the difference between the eigenvalues found from the 
simulated flow and those obtained from the numerical solution on the Orr- 
Sommerfeld equation was less than 3 %. 

3. Numerical and flow parameters 
From the practical point of view it is desirable to carry out the duct simulation a t  

the highest possible Reynolds number. However, the choice of its value is severely 
constrained by physical and numerical considerations. For the simulation of 
turbulent bounded flows in general, it is necessary to represent the viscous sublayer 
where some of the structures associated with the generation of turbulent energy are 
thought to originate. The grid spacing normal to a boundary needs to be sufficiently 
fine to resolve the steep velocity gradients occurring there, whereas the spanwise grid 
should be sufficiently dense to capture the high- and low-speed streaks. For the duct 
flow, the coordinate direction normal to one pair of opposite walls corresponds to the 
spanwise coordinate of the other pair and vice versa. Thus, the grid spacing 
throughout the duct cross-section is determined by the resolution requirements near 
the boundaries. The cross-stream grid point distribution employed here was derived 
using the following transformation function : 

- 1  < t-< 1 ,  

where 2h is the length of the square duct side and the adjustable parameter c was 
used to fix the grid spacing nearest to each boundary. For the present computations 
c = 1.8417. 

Another limiting factor arises from the streamwise lengthscales of the turbulent 
flow. It has been found necessary to make the streamwise extent of the computational 
domain very long to ensure that the two-point streamwise correlations of the velocity 
at all transverse positions have decayed sufficiently for separations equal to half the 
streamwise length. This is essential in order to approximate fully developed axial 
flow with the periodic boundary conditions along the mean flow direction; it was 
achieved at  the expense of having a somewhat larger streamwise grid spacing. 

Because the flow is driven by a constant pressure gradient, dpldx, the average 
value of the friction velocity over the wetted area of the duct is given by 
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where H is the hydraulic diameter of the duct defined by 

H = 4A/S, 

with A the cross section area of the duct and S its perimeter length. For the square 
duct, H = 2h. 

The Reynolds number based on the friction velocity and hydraulic diameter is 
Re+ = 300. The computational domain has dimensions 20n (streamwise) x 2 x 2, or 
equivalently 9425 x 300 x 300 in wall units (a wall length unit is defined as v/u7 and 
flow variables measured in these units will be denoted by the superscript +). The 
number of grid intervals along each direction is 1000 x 127 x 127, which correspond 
to a streamwise grid spacing of Axf = 9.4, and 0.45 <Ay+, Az+ < 4.6 for the cross- 
stream directions. As noted above, the rate of change of grid spacing is at most 6 %. 
Because of the staggered grid arrangement the velocity components parallel to each 
wall are, at their closest, half the near-wall grid spacing, or 0.225 wall units. The 
computation with this set of parameters will be referred to below as the standard run. 
On a four-processor Cray-2 system the code takes, on average, 85 C.P.U. seconds for 
each time step and occupies 131 million words of core memory. 

Owing to the explicit treatment of the advection terms, the time step At was 
restricted to a value satisfying 

CFL,,, = At max -+-+- < 0.3, [E :; 21 
which resulted in the choice At = 0.054 v/u," (defined as wall time units) or 
equivalently O.O0036h/u, (hlu, will be referred to as a turnover time). This gave an 
average value for the CFL,,, of 0.24. 

The initial conditions for the simulated flow were derived from the velocity fields 
of two precursor simulations. In  the first of these the dimensions of the computational 
domain were 8 7 ~ x 2 ~ 2 .  The starting field in this case was equal to the sum of a 
solution for laminar duct flow and a fluctuating velocity field derived from a random 
number generator. At first, the grid in the streamwise direction was chosen to be 
coarse whereas the cross-flow resolution was identical to that of the final calculation. 
The initially unphysical velocity field was allowed to relax for several turnover times 
and was subsequently transferred to a finer grid using Fourier interpolation. After 
successive x-grid refinements the grid spacing became identical to that of the final 
simulation. It was found that with the shortest domain the u-velocity fluctuations 
remained strongly correlated for the maximum possible separation. The simulation 
was then continued in a 16n x 2 x 2 domain with identical grid resolution. The initial 
conditions for this run were set by copying the latest flow field from the 8n x 2 x 2 
simulation into one half of the new domain, and setting the remaining half to a 
laminar flow with the streamwise velocity field identical to the mean flow of the 
turbulent part. This ensured that the highly correlated precursor field was not 
carried into the successor simulation. After several turnover times the two-point 
velocity correlations at  various cross-stream positions were calculated using space 
and quadrant averaging. These indicated that a 16n simulation would probably have 
been unaffected by the use of periodicity but it was felt safest to use a larger domain. 
The incremental cost of the computation would be partly offset by having a larger 
sampling volume and better vectorization. The velocity field was thus transferred, as 
before, into the final 20n x 2 x 2 domain and was run until the fluctuating field had 
filled the whole domain. The simulation was continued for a further six turnover 
times, followed by five turnover times during which time-averaged statistics were 



108 S.  Gavrilakis 

FIQURE 2. Contours of the instantaneous fluctuating component of u over an 8rc section of a plane 
parallel to the y = 2h wall (CD ; see figure 1 for definition) and at a distance y = 0.07h (y' = 10.5) 
from it. The mean flow is from left to right : -, positive values ; . . . . . , negative values. 

accumulated. The maximum variation of the bulk velocity (U,) over the latter part 
of the simulation was less 0.2 YO of its mean value, while the corresponding figure for 
the volume-average kinetic energy was below 5 YO. 

Compared to the final simulation, the maximum intensities of streamwise velocity 
(urms) from the 16x and 8x simulations are 2 YO and 6 YO lower respectively. It would 
not be safe, however, to assign any definitive trend in these statistics. The 
uncertainties due to time-averaging are greater than the above differences, most 
notably in the 8x simulation where the integration time would need to be increased 
by a factor of a t  least 2.5 in order to compensate for the smaller computational box. 
Also, the velocity field generated when using the 8x domain is not a reliable source 
of physical information. Nevertheless, it  may be of interest to note two more salient 
statistical features. One concerns the one-dimensional velocity spectra, notably that 
of u (not shown), which shows higher energy content in the low-wavenumber range 
of the 8x calculation compared with the same range of the 2Ox simulation. The total 
energy of each component is approximately the same. Thus, in both calculations 
similar amounts of energy are being extracted from the mean field but they differ in 
their distribution within their respective wavenumber ranges. It has also been found 
that the two-point u-correlations showed the slowest decay within 0.15h of the duct 
walls. Figure 2 shows contours of the instantaneous distribution of the fluctuating u- 
field a t  time t = 1 lh/u, from the 20x simulation. It is an 8x segment of a plane which 
is parallel to the y = 2h wall (side CD on figure 1 a)  and at a distance 0.07h from it. It 
was chosen because it shows a meandering low-speed region (starting at x = 10 h, 
z = 1.5h) spanning the whole length of the section as well as what may be called the 
merging of two low-speed regions near x = 21h. It may be conjectured that this 
could be one mechanism responsible for the generation of the longest low-speed 
streaks. Similar examples at earlier times were observed to break up. 

The mean flow statistics were calculated by sampling in time the instantaneous 
streamwise-averaged flow variables. Fluctuating quantities were estimated with 
respect to the final mean values. To alleviate the core memory requirements during 
execution, the calculation of the two-point velocity correlations was restricted to the 
first quadrant only. All other statistics were calculated for the whole of the duct 
cross-section. Despite the great length of computational domain used, the averaging 
time was not sufficient to give completely (anti)symmetric variation in all statistics, 
though it was sufficient for unambiguously deducing all qualitative features of the 
flow field as well as quantitative statistics when quadrant averaging is used. To test 
if any of the asymmetry was due to coding error, a very low-resolution run was made 
- which was of no physical significance - for extremely long times. From this it was 
established that the code could produce statistics with appropriate symmetry or 
antisymmetry t o  within 1 %. 

Because the strong sweep and ejection events are not necessarily perfectly aligned 
with the streamwise axis, their apparent duration along a line of grid cells parallel to 
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the x-axis can be much shorter than the lifetime of the event itself. To avoid 
excessively long integration times the sampling period was small enough to capture 
such events. The sampling interval of 0.018h/uT, or every 50 time steps, was 
sufficiently small to capture the peaks in the time history of the Reynolds shear 
stresses near the duct walls. The mean secondary flow field is converged except near 
the wall bisectors. 

The greater part of the viscous dissipation was found to occur in the mean field. 
Two thirds of the total dissipation was due to the mean u-field whereas less than 
0.1 YO was due to the mean secondary flow. Assuming that the remaining third due 
to the turbulent field is uniformly distributed over the whole duct volume, the 
Kolmogorov dissipation scale will be close to 2 wall units. This is probably an 
underestimate of the magnitude of the smallest scales present in very low-Re 
turbulent flows with the same energy dissipation rate since in this case the viscous 
dissipation will be distributed over all scales rather than being concentrated in the 
smallest. 

In order to test the sensitivity of the computed results to the grid size, two coarse- 
grid runs were made for shorter integration times. In both of these runs the 
streamwise length of the computational box was bigger (24s~) but no flow parameters 
were changed. In  the first-which will be referred to as run R1 -the grid was 
768 x 127 x 127, implying a 56% increase in Ax. The statistics from this run agreed 
well with the corresponding fine-grid data to within the averaging uncertainty, which 
was quantified from the asymmetry in the fine grid data. Some differences were 
observed in the streamwise spectra but only for wavenumbers corresponding to 
wavelengths less than 4Ax on the coarse grid. The energy contained in these high 
wavenumbers is very small with no apparent qualitative effect on other turbulent 
statistics. One example of the influence of coarser streamwise resolution on the flow 
is shown on figure 7 below. It shows the distribution of the wall stress, which is 
related to the secondary flow field, and indicates close agreement between the two 
simulations. The second run - run R2 - was made on a 768 x 63 x 63 grid (the cyclic 
reduction algorithm used in solving (9) allows 2m- 1, m being an integer with m > 2, 
grid intervals). The cross-stream resolution of this run is too coarse for testing the 
grid convergence of the other calculations, but it was found useful in excluding the 
possibility that the cross-stream resolution might have had a decisive influence on 
the simulated secondary flow field. 

The two-point velocity correlations for three different cross-stream positions are 
shown on figure 3. The (y, z )  coordinate values refer to the position of the centre of 
the grid cell whose velocities are displayed. In figure 3 (a, c) the w- and w-velocities 
are symmetrically placed about the corner bisector. In the former the correlation 
curves are very similar whereas in the latter the similarity persists for relatively 
small separations with larger separations having small and apparently random 
variations. The lack of smoothness at larger separations in all figures is the result of 
insufficient time averaging. A comparison of the velocity correlations for cross- 
stream positions symmetrically placed about the corner bisector, but within the first 
duct quadrant - not shown - indicate that the waviness is not systematic. The 
curves shown are typical of those found in other cross-stream positions. 

The results shown on figure 3 also suggest that the ratio of the length of the 
computational box to an integral lengthscale of turbulence in the duct is much 
greater than that found sufficient for the plane channel simulation of Kim, Moin & 
Moser (1987). Although the minimum duct length necessary is not a t  present known, 
the difference remains notable even if one considers that the length of the duct at the 
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present Reynolds number has to be greater than 871. However, the results from the 
two simulations are not contradictory. The present results support the use of two- 
point correlations w mnsitive means for detec$ing unphysical effects in short periodic 
domains, but also suggest that their use in predicting the minimum box length, 
without some prior knowledge about the flow field, is unsafe. This is compatible with 
the properties of the two-point correlations in relation to the underlying structure of 
turbulence as discussed by Townsend (1976). For example, his model of quasi- 
periodic structures in space (p. 10) can be made to account for the present findings 
in a period domain but it is not at  present known if this model is appropriate. 
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4. The mean velocity field 
The Reynolds number based on the bulk velocity u b  was Re, = 2hU,/v = 4410, 

with the volume-average turbulent kinetic energy having a time-mean value of 
2.1~:. Variations in the instantaneous secondary flow field had no discernible 
influence on U,. This may be one of the factors contributing to the success in 
predicting the friction factors in rectangular ducts of correlations adapted from 
circular pipe flows (Jones 1976). The friction factor for the square duct can be written 
as f = 8u,2/Vb. The simulation gives f = 0.037, the same as the value obtained from 
Jones’ correlation 

where Rej is the modified Reynolds number which, for a square duct, is given by 
Rej = 1.  125Re,. The agreement is excellent even though the present Reynolds number 
is near the lower limit of the experimental data that support Jones’ correlation. 
Additionally, the ratio U,/U,, where U, is the mean centreline velocity, is near 1.33. 
This value is larger than those measured in higher Re, duct flows but consistent with 
the trend found in the review part of the work by Demuren & Rodi (1984) which 
includes Lund’s (1977) value of 1.25 for Re, = 25000 - the lowest -Re, data included 
in their figure 2. Evidence for the presence of a core flow region in the simulation can 
be seen in figure 4(a), which shows the variation of mean streamwise velocity, U+, 
along the diagonal (AC). The steeply varying velocities possess inflexion points each 
at  a distance 0.13 h along the diagonal from their respective corners. This feature is 
also found in the profiles of fully developed laminar duct flows. Four additional 
inflexion points are also present in the flatter top part of the velocity distribution in 
figure 4 (a)  and are symmetrically placed about the centreline, but they are difficult 
to discern. Figure 4(b) shows the variation of U/U, along the normal bisector and 
includes the low-Re plane channel measurements of Nishino & Kasagi (1989) and 
Niederschulte (1989) (for his Reynolds number 2457 based on the bulk velocity and 
the channel half-width), for comparison. Relatively smaller flow velocities are found 
in the duct near y / h  = 0.25, this being the effect of the secondary flow. 

A short experimental study of the turbulent flow through a square duct has 
recently been carried out by Cheesewright, McGrath & Petty (1990). Their Reynolds 
number based on the centreline velocity and duct side was Re, = 2hU,/v = 4900 
which is close to  that of the simulation, 5880. In  this experiment a fibre optic LDA 
technique was used to measure the streamwise and horizontal velocity statistics in 
air seeded with smoke particles. The measurements for the streamwise velocity were 
carried out 0.078 hydraulic diameters downstream of the duct discharge exit plane 
whereas the horizontal velocity statistics were obtained 0.64 hydraulic diameters 
upstream of the exit plane. The latter was situated about 100 hydraulic diameters 
downstream of the inlet trip device. There is therefore some uncertainty associated 
with the measured velocities and in particular with the moments of the streamwise 
component near the assumed duct boundaries. Figure 5(a )  shows a comparison 
between the measured values of U / U ,  (U, is the only velocity scale available from 
this experiment) and those derived from the simulation by averaging the time 
statistics over the four quadrants. The agreement between measurements and 
simulation for points in the flow at distances greater than 0.2h from the nearest wall 
is excellent. Outside these limits the measured U-values are quite asymmetric with 
respect to the corner bisector with velocities differing by as much as 20%. 
Comparison between the measured and quadrant-averaged values of W is made in 
figure 5 ( b ) .  Because the simulation results are symmetric to within 4% it is inferred 

l/$ = 2 log (Re,fi) -0.8, (11) 
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FIGURE 4. Mean streamwise velocity distribution (a)  along the diagonal AC, and ( b )  comparison 
with plane channel data: -, U-velocity from the duct simulation along the wall bisector. Plane 
channel data: A, Niederschulte (1989) ; A, Nishino & Kasagi (1989). 
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data; 0, experiment. 

-by comparing the zero crossings of the two sets of data - that the secondary flow 
cells of the experiment are also asymmetric about the corner bisector. 

The mean secondary flow field is shown in figure 6. In figure 6 (a )  the U-isovels have 
been superimposed on the vector field, showing the correspondence between the two 
sets of flow statistics. Although some asymmetry in these results is still evident, the 
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main features of the flow are uniformly present. Moreover, comparisons with data 
from run R1 show that the asymmetry found in figure 6 ( a )  is not systematic. The 
distribution of 77 across the duct cross-section is seen to conform with the expected 
effects of the secondary flow field. The distortion of the isovels towards each corner 
is due to the momentum transfer by the secondary velocities towards that corner. 
The mean cross-stream flow does not however extend to or remain close to the walls 
as far as the wall bisectors, and the isovels are found to bulge toward the wall around 
the wall bisectors where the secondary flow field lacks symmetry. To overcome this, 
the secondary flow on figure 6 ( a )  has been averaged over all octants and is shown in 
figure 6(b ) .  The maximum secondary velocity thus calculated is 1.9% of the bulk 
velocity and it is found at y / h  = 0.071, z /h  = 0.45 or y+ = 10.65, x+ = 67.5. Even 
though there is some uncertainty as to the appropriate velocity scale near the corner, 
it is evident that the maximum secondary velocity occurs just outside the wall 
viscous sublayer rather than on the corner bisector. An unexpected feature of figure 
6(b )  is the presence of a smaller flow cell near the wall bisector with a maximum 
velocity in this cell well below 1% of the bulk velocity and with its centre below 
y / h  = 0.1 (y+ = 15). These flow features give rise to the average wall stress ( T ~ )  

distribution shown in figure 7 .  This shows two wall stress peaks due to the larger 
secondary flow cells at a distance 0.31h from the nearest corner and a third one in the 
middle of the duct wall. The contribution of the spanwise stress component is very 
small. The angle of the wall stress vector with the z-axis is at most 3". The average 
wall stress over the four walls and its value calculated from the mean pressure drop 
differ by less than 0.1 %. This distribution of the wall stress has not been observed 
in higher-Reynolds-number experiments in square ducts although it has been found 
in turbulent flows through rectangular ducts at some higher aspect ratios 
(Leutheusser 1963; Knight & Pate1 1985; Nezu, Nakagawa & Tominaga 1985). 

It is of some importance to ascertain the sensitivity of the wall stress distribution 
to the numerical parameters of the simulation. Firstly, there is the possibility that 
the duration of the time-averaging phase of the simulation is not sufficient. This 
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appears unlikely since the wall stress distribution has been found to be the same for 
all four walls, with similar results from the precursor simulations. Some very short 
time averages and instantaneous streamwise averages have been found to have a wall 
stress minimum a t  some of the wall centres but apparently these do not survive in 
the mean. Another important consideration is the effects of the grid size and 
distribution. A substantial increase in the streamwise grid spacing Ax, run R1, gives 
results very similar to those of the standard run : figure 7. With run R2 both the grid 
spacing and the rate of grid change in the cross-stream directions are quite different 
from those of the standard run but the computed mid-wall stress has been found to 
be an attenuated local maximum suggesting that further coarsening of the cross- 
stream grid will suppress the mid-wall maximum of the stress. There is therefore no 
apparent sensitivity of the wall stress distribution derived from the simulation on the 
grid used. It also worth mentioning a t  this point a possibly fundamental difference 
between simulated and measured duct flows. In  the former, the computed secondary 
flow is not contaminated with upstream influences. It is however possible that the 
measured secondary flows are a mixture of the turbulence-generated flow and 
structures convected from the developing part of the duct. This is one possible 
explanation for the asymmetries in the mean velocity data of Cheesewright et al. 

The average value of the four mid-wall stresses obtained from the simulation is 
approximately 1.18?, (the same value was obtained from run Rl). The work of 
Popovich & Hummel (1967) suggests that the local maximum may be detectable. 
These authors used a non-intrusive visualization technique to obtain 147 samples for 
the instantaneous velocity gradient a t  the mid-point of the wall of a square-duct 
turbulent flow. Their Reynolds number based on the bulk velocity and the hydraulic 
diameter was 13100, which is about three times the present value. The mean wall 
stress for the experiment was calculated indirectly from the mean flow rate on the 
assumption that the friction factor for the duct was the same as that of a round pipe 
a t  the same Reynolds number. This estimation gave a value for their ?, below the 
local stress value inferred from the mid-wall flow visualization, but it is also possible 

(1990). 
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to derive a more appropriate estimate for TW from Jones' correlation for square-duct 
flows (equation (11)). With respect to the latter estimate for the mean wall stress, the 
measurements of Popovich & Hummel imply that their mid-wall stress is equal to 
l.15Tw, which is in good agreement with the result of the simulation. The factor 1.15 
corresponds to the authors' preferred estimate for the mid-wall stress, but the 
reported measurements show that alternative estimates within 7 % of this value are 
possible. 

Of the three velocity scales available, namely U,, U,, and u,, the friction velocity 
is usually deemed the most suitable choice for bounded turbulent flows since its value 
can be directly related to the turbulent stress field. The variation of the local mean 
wall stress, and therefore the local friction velocity, over the duct boundaries 
introduces an ambiguity as to which scale should be used. Within the viscous 
sublayer the local value is the correct choice. For the flow field near the streamwise 
axis of the duct the mean value defined by (10) is more appropriate. Furthermore, 
it is not obvious how the transition between the mean and local values should take 
place. In figure 8 the variation of quadrant-averaged U is shown with two different 
velocity scales : u, and the mid-wall value u* (in the following the superscript * will 
be used to  denote quantities scaled using local values of the friction velocity). 
The latter scaling is expected to be valid for some distance beyond the viscous 
sublayer as the distortion of the isovels on figure 6 (a) suggests. Both scalings show 
logarithmic regions. The logarithmic region on the u,-scale follows the relation 
U+ = 3.2 In (y') + 3.9 over the range 30 < p , / v  < 100. The constants in this 
approximation of the logarithmic law are quite different from the accepted values 
of 2.5 and 5.0 respectively for high-Reynolds-number flows near boundaries. In  
low-Reynolds-number flows, a better value for the latter constant is 5.5. The 
corresponding duct value is well below that, indicating a stronger influence of the 
secondary flow field on U. 
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5. Statistics of the turbulent field 
In the experimental work of Wei 6 Willmarth (1989) and of Teitel 6 Antonia 

(1990) on plane channels at low Reynolds number, it  was observed that the effects 
of a bursting event near one of the boundaries can sometimes be detected in the 
vicinity of the other. This finding suggests that there may be important differences 
underlying the turbulent boundary layer and plane channel (which below will be 
referred to simply as channel) flow measurements. In  order to minimize the sources 
of uncertainty in the following comparisons, additional data from published channel 
flows only will be used. 

The variation of the flow statistics along one of the wall bisectors of the duct will 
first be compared with their cross-stream variation in channels. The mean flow along 
each wall bisector has no component normal to it, a condition similar to zero mean 
spanwise flow in a channel, although there is a non-zero component parallel to the 
wall bisectors over most of their length. The influence of the walls parallel to each 
bisector is also quite strong. Another difference with channel flows is that symmetry 
requires that the cross-stream velocity statistics at  the centre be the same. In this 
respect, conditions at  the centre of the duct are closer to those near the centre of a 
circular pipe. 

Owing to the staggering of the velocities in space, the spanwise velocity component 
has no value defined on the normal bisector but at its nearest it has values at a 
distance of 2.3 wall units from the bisector. With the quadrant averaging which will 
be used below, only one set of values close to the normal wall bisector is available. 

The equation for the mean streamwise momentum can be written as 

(12) 
auv a(uw> auw a(u~w~) a2u a2u dp 

a Y  a Y  aZ a Z  ay2 a22 dx 
+ v-+ v- = - , 

where u = U+u' with u' being the fluctuating velocity and with similar definitions 
for the other two velocity components. The operator ( ) is used to denote the average 
of the enclosed quantity, which in the simulation is obtained by space and time 
averaging ($3). The terms of this equation represent the mean forces per unit mass 
acting a t  a point in the fluid. The sum of all terms at  various cross-stream positions 
has been found to equal - to within 5 % - the pressure term on the right-hand side 

The distribution of the quadrant-averaged Reynolds stress ( - u'd) scaled with 
the similarly averaged mid-wall stress is compared with the simulation results of Kim 
et al. (1987) and the measurements of Nishino 6 Kasagi (1981 ) and Niederschulte on 
figure 9(a). The smaller gradients between the duct wall and the maximum of 
(-u'vr) at y lh  = 0.2 can be accounted for by the contribution of the other terms in 
(12), but beyond it the scaling based on u* becomes progressively inappropriate. 
Because the viscous terms are negligible near the centre of the duct, symmetry 
requires that a t  the centre 

of (12). 

where use was made of definition (10). 
The variation of the correlation coefficient between u and v is shown on figure 9 (b). 

For 0.3 < y/h the experimental values for the coefficient tend to be below those of the 
Kim et al. (1987) and duct simulations. A near-wall maximum is evident in both 
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simulations, with the peaks occurring near y* = 9 and 10 for the duct and channel 
respectively. The channel measurements also suggest the presence of a near-wall 
peak but the scatter within and between experiments prevents any quantitative 
inference. For y / h  < 0.25 (y* < 40.5) the correlation coefficient for the duct flow 
indicates a stronger organization of the turbulent field than in the simulated channel 
flow. 

The velocity-scale dilemma is again encountered when comparison of the duct 
intensities (r.m.s.) is made with channel data. Figure 10(a) shows the variation of 
urmS scaled with its local u* value where in this case u*/u, = 1.09. The peak value of 
the u-intensity in the duct is found to be about 4% below the simulated and 
experimental values, except for the Kreplin & Eckelmann (1979) measurements 
which have a larger peak value than any of the other datasets. Near the streamwise 
symmetry axis both simulations predict lower intensities but it is noted that if u, 
were used with the duct data, close agreement would be found outside the viscous 
sublayer (y* > 5) .  Similar comments apply to figure 1O(c) on the w-intensity. The 
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Additional plane channel data from Alfredsson et al. (1988) : + , Re, = 5000; x , Re, = 3800. 
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variation of intensity of the normal component v in figure 10(b) falls within the 
scatter of the experimental data. The near-wall variation of the intensities is shown 
on figure 11. Additional experimental data have been included in the figure for u,,, 
taken from the paper by Alfredsson et al. (1988). The data for the R e ,  = 3800 (based 
on the centreline velocity and the separation of the channel walls) experiment were 
obtained by them from the same oil channel facility as in Kreplin & Eckelmann 
(1979), whose data tend to support the earlier findings. For this reason rescaling of 
the Kreplin & Eckelmann data with a higher friction velocity, as in Kim et al., was 
not adopted here. For y* < 5 the simulations agree closely with Kreplin & 
Eckelmann (1979) but the other datasets show steeper upms gradients in the viscous 
sublayer. Consensus between the computations and available data on w,,, is 
confined to within the viscous sublayer. Good agreement is found in the near-wall 
v,,, variation, y* < 20, with the exception of the Kreplin & Eckelmann's (1979) 
data. 

The limiting values for urms/U and wrms/U on the boundary are equal to the wall 
values of the root-mean-square of the spanwise, w,, and streamwise, w,, vorticity 
scaled with wall variables, For the duct data in figure 12 the implied velocity scale 
is the mid-wall friction velocity u*. The measurements by Alfredsson et al. (1988) and 
Nishino & Kasagi (1989) suggest a value of 0.4 for the spanwise component, with the 
curves from the computations tending to boundary values around 0.36. Alfredsson 
et aE. also used Popovich & Hummel's (1967) duct data to find that the non- 
dimensional r.m.s. of w, at the wall is 0.38. The w,,,/U ratio from the simulations is 
found to approach the wall with a noticeable slope although this would not be 
expected with higher grid resolutions since both w,,, and U have a linear dependence 
on y very close t o  the wall. The value of w,,,/U at the grid point nearest to the duct 
wall y* = 0.24 is 0.17. The quadrant-averaged r.m.s. variation of the three 
components of the fluctuating vorticity along the wall bisector is shown in figure 13. 

The near-wall asymptotic behaviour of the three components of the intensity and 
shear Reynolds stress is shown in figure 14. The streamwise intensity of both 
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FIGURE 14. Wall limiting behaviour of the normal and primary shear stresses: -, quadrant- 
averaged simulation data along the duct wall bisector; ---, Kim et al. (1987) plane channel 
simulation. 

simulations shows linear variation below y* = 2. The other two intensity components 
are found to follow their expected wall-limit variation only approximately. The 
results from the modelled boundary-layer work of Chapman & Kuhn (1986) suggest 
that the normal intensity exhibits quadratic variation with the distance from the 
wall for y* less than 0.3 although their figures show that this can be considered to be 
approximately true as far as y* = 1. Fitting the expected limiting relation of the 
cross-stream intensity to the appropriate value at the grid point nearest to the duct 
wall, it is found that vFms = 0.0076y*2. 

Asymmetry due to insufficient averaging was most pronounced in the higher-order 
velocity statistics. For this reason in the rest of this section quadrant-averaged data 
only will be used. The four-wall-averaged skewness and flatness velocity values at the 



122 S. Gavrilakis 

Distance from 
nearest wall y / h  Skewness Flatness 

U 0.0015 0.95 4.17 
2) 0.003 -0.07 15.4 

6.5 W 0.0015 - 

TABLE 1. Values of the higher-order velocity statistics at the mid-wall grid point of the duct 

grid nearest to the mid-wall are given in table 1. The w refers to the spanwise velocity 
whereas v is the normal component whose value has been defined as positive when 
the fluid moves away from the boundary. It is also noted that because of staggering 
S(w) is defined slightly off the duct bisector where S(w) = 0 due to symmetry applies. 

Except for S(v) ,  the values shown in table 1 are within 5% of those obtained from 
run R1. Because of the linear dependence of the instantaneous u- and w-components 
on y well inside the viscous sublayer, the skewness and flatness factors of u at the first 
grid point are equal to the skewness and flatness of the fluctuating streamwise stress 
at the wall. For these quantities Alfredsson et al. reported the values of 1.0 and 4.8 
as best representing their measurements. The former value is in excellent agreement 
with the present computations, and good agreement is found between the flatness 
factors. 

The influence of the sidewalls on the calculated velocity statistics along the normal 
is quite different for each velocity component. The fluctuations in u at the duct 
centre could have their origin in events near any of the four walls and on average 
each wall is of equal significance, whereas in the proximity of any wall the direct 
influence of the others would be small. Ejection events from the sidewalls are also 
expected to have a weak w-component and therefore to make no significant 
contribution to the statistics of v along the normal bisector. Conversely, the sidewalls 
will have a greater influence on the w-statistics near the duct centre. 

The skewness data from three channel experiments and simulations are compared 
in figure 15. The measured values were obtained using three different measuring 
techniques and show considerable scatter. The S ( v )  variation in the duct is closest to 
the hot-wire measurements of Kreplin & Eckelmann (1979) for z/h > 0.3 with 
skewness values nearer to the Gaussian distribution than the other channel data. 
However, the more recent measurements of Nishino & Kasagi (1989) and 
Niederschulte indicate that S(w) is greater than the hot-wire measurements seem to 
suggest. It is noted that numerical diffusion may also be a contributing factor in 
reducing the skewing of v in the duct results, but the lower-resolution runs ($3) 
indicate that the differences in S(w) compared with the channel data are, for the 
greater part, genuine. Near the wall S ( v )  crosses the zero axis near y* = 40, reaching 
a minimum of about -0.4 a t  y* = 11 and remaining negative within the viscous 
sublayer. 

A direct comparison of the intensities from simulation and square-duct 
experiments is made in figure 16. The measurements of Yong (1988) along the wall 
bisector of a square duct a t  Re, = 10000, are also included. They were extracted from 
the appropriate figures of his thesis. For the wall bisector, z/h = 1, Cheesewright 
et aZ.’s (1990) experiment shows a maximum value for u,,,/U,, noticeably larger than 
that from the simulation. Because the difference in the Reynolds number between 
that experiment and present simulation is small, the maximum u,,,/u* for the 
former is expected to be well above any of the plane channel data shown in figure 
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FIGURE 15. Velocity skewness factors along the wall bisector in global coordinates: (a) u ;  ( b )  2). 

Legend as for figure 10. 

lO(a). A possible explanation for this difference - suggested by H. Alfredsson 
(private communication) - is that owing to the flow expansion at  the duct exit the 
measured values of U would be below those for the confined flow even though the 
turbulent structures would not alter significantly. This would lead to  overestimates 
for the measured intensity of u. Overall, the data of Cheesewright et al. show 
noticeably higher u,,,/U, values at distances greater than 0.4h from the duct centre. 
The peak u,,, value found in Yong’s measurements is in apparent agreement with 
the Cheesewright et aZ.’s measurements. If the u, scale had been used, however, then 
Yong’s and the simulation maxima would both be 2.8u, and located at  y+ = 12 and 
13 respectively. Moreover, it would have been preferable to use the local velocity 
scales, but these were not available from the experiments. Excellent agreement 
between Cheesewright et al.’s and the simulation data for w,,,/Uo is found over the 
duct quadrant, figure 16(b). 

6 FLM 244 
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6. The mean streamwise vorticity 
Most theories about the origins of the mean secondary flow have been built around 

the Reynolds-averaged Navier-Stokes equations and/or equations derived from 
them. A particularly concise example of this approach is the equation for the mean 
streamwise vorticity which for a fully developed duct flow reads 

where 

is the mean streamwise vorticity. The first two terms on the left-hand side have the 
familiar convective form found in the original Navier-Stokes equations, representing 
the convection of the mean vorticity by the secondary flow itself. The analogy 
between the viscous terms is more restricted (Morton 1984), but the effect of the last 
term of (13) is the tendency for viscosity-mediated reduction in gradients of 0. The 
two terms involving the Reynolds stresses may, generally, be described as sources of 
vorticity. The first is associated with the vorticity production due to gradients in the 
anisotropy of the cross-stream normal stresses. The significance of the second has not 
always been recognized in modelling work ; it may act as a production or dissipation 
term for 0. The modelling of such flows involves finding appropriate prescriptions for 
calculating the Reynolds stresses rather than making direct use of (13), although any 
model must be consistent with the vorticity equation since it is an exact result of the 
equations of motion. 
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The finite-difference form of the terms in (13)  has been calculated from the 
simulated flow field and the distributions of the three terms most dominant near the 
corner, with additional averaging over all octants, are shown in figure 17. The mean 
streamwise vorticity 52, computed from the vector field of figure 6 ( b ) ,  is shown in 
figure 17(a) .  The positive x-axis is directed into the plane of these figures and 
therefore the vorticity a t  the centre of the larger flow cell is a negative minimum. 
From this point the vorticity increases as the wall is approached, and attains a 
positive maximum on the wall itself. The change in sign occurs about 7 viscous 
lengths away from the lower wall. The value of the maximum D at the wall is more 
than twice the magnitude of the minimum a t  the centre of the primary cell. The 
spatial distribution of the stress anisotropy is shown in figure 17(b) ;  its greatest 
contribution is in the production of positive mean vorticity near the corner at 
y / h  = 0.02, z / h  = 0.19 or y+ = 3,  z+ = 28. Very close to it, y / h  = 0.025, z / h  = 0.19 in 
figure 17(c),  the minimum of the secondary stress term is situated, with an absolute 
value about 10 YO less than the production maximum. The diffusion term has also a 
minimum, but it is further away from the corner: y / h  = 0.19, z / h  = 0.25 in figure 
17 ( d ) .  

5-2 
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A more direct comparison between all terms is made in figure 18. In figure 18(a) 
the variation of SZ and the terms of (13) along a line parallel to the z-axis and at  a 
distance y / h  = 0.017 (y' = 2.55) is shown. The vorticity remains positive for the 
most part, except near the wall bisector. The anisotropy term is the main contributor 
to the production of positive vorticity throughout the spanwise length of the viscous 
sublayer ; the viscous and shear stress terms act  mostly as sinks of positive vorticity 
(two grid values of the former term near the bisector are in error : two columns of the 
diffusion term have been lost during the computation). The convection term makes 
only a small positive contribution just beyond the maximum of the production, with 
a smaller negative one near z /h  = 0.5. 

The sources of the negative vorticity associated with the larger flow cell can be seen 
in figure 18 ( b )  where the variation of the vorticity equation terms as a function of the 
distance along a line parallel to the vertical axis at  z/h = 0.24 is shown. Below the 
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zero crossing of SZ at y l h  = 0.044, the relative magnitudes of the various terms are 
as in figure 18(a).  In the region where 52 is negative, large contributions to its 
production are made by the viscous and secondary stress term near the zero crossing 
of the vorticity, with the stress anisotropy term acting now as a sink. The former 
Reynolds stress term quickly turns into a sink of (negative) vorticity further from 
the wall. Near y l h  =0.07 the production of vorticity is dominated by viscous 
diffusion and mostly balanced by the anisotropy term. Near the corner bisector, 
y / h  = 0.24, viscous effects are small, with approximately similar contributions to the 
production of negative vorticity being made by the convection and anisotropy term 
which are cancelled by the shear stress term. Further away from the vertical wall the 
various terms become numerically smaller with more complicated behaviour, figure 
17. In general, the anisotropy and viscous terms tend to dominate the regions of 
positive and negative mean vorticity away from the corner bisector. 

It appears from the above that the production of, in this case positive, mean 
vorticity within the formal viscous sublayer, coupled with the zero-52 constraint on 
the bisector due to symmetry, is mainly responsible for the presence of mean 
vorticity in the bulk of the flow. This is consistent with the visual observation of the 
streamwise-averaged secondary flow field at different times of the simulation, which 
indicates that the flow near the sides of each corner and toward the wall bisectors is 
much more persistent than the flow cells themselves. Viscous diffusion plays a major 
part in the transport of mean vorticity whereas convection is weak by comparison. 
The secondary stress acts mainly as a sink term for the local vorticity. 

The importance of the secondary stress term in the secondary flow modelling was 
identified by Demuren & Rodi, and the present results strongly support their 
assumption. However, the simulation results show that viscous effects are much 
greater than the mean convection whereas Demuren & Rodi assumed the reverse. It 
is noted that these observations are applicable to low-Reynolds-number flows, 
although the effects of increasing the Reynolds number may be only to push the 
various extrema further into the corner in terms of the global scales. If so, then the 
present results imply that robust modelling of the secondary flows will depend on 
finding suitable wall functions. The advantage of this approach would be that these 
functions are local and may be more easily approximated than the complicated 
behaviour of the various stresses over most of the flow field. 

7. Conclusions 
The fully developed turbulent flow through a straight duct of square cross-section 

was simulated using a centred finite-difference scheme. The Reynolds number based 
on the bulk velocity and hydraulic diameter was 4410 and the total number of grid 
points employed was 16.1 x lo6. Lower-resolution runs were made to confirm the 
validity of the results presented herein. Owing to the long streamwise velocity scales 
found in early computations of this work, it was also necessary to confirm the 
convergence of the simulation results with respect to  the streamwise length of the 
computational box. Turbulent statistics along the wall bisector of the duct were 
found to be in good agreement with plane channel flow data. Measurements in low- 
Reynolds-number square-duct flows and simulation results are in close agreement. 

The mean secondary flow field of the simulated flow is in good qualitative 
agreement with higher-Reynolds-number experiments. In the low-Reynolds-number 
simulation, the maximum secondary velocity is about 2 % of the bulk velocity but 
it is found near the corner walls rather than near the corner bisectors. Because the 
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secondary velocities in the vicinity of the wall bisectors are a fraction of that 
maximum, the mean flow about the bisector is not quite symmetric in the statistics 
of the simulation. When the mean secondary flow field is averaged over all octants, 
an additional flow cell is found between the larger corner flow and the wall bisector. 
There is no direct experimental evidence for the existence of this flow feature and this 
is likely to remain so since the accuracy of present experimental techniques does not 
permit measuring such small velocities. However, the secondary flow field affects the 
distribution of the wall shear stress, which in the simulated flow shows a local 
maximum at each mid-wall point in addition those due to the larger flow cells near 
each corner. It is likely that the wall stress can be measurable but the use of the 
' Clauser plot ' method is not feasible because of both the high accuracy required and 
the uncertainty in the parameters of the logarithmic law. 

If one excludes the region near the wall bisector where the smaller secondary flow 
cells are found, the mean streamwise vorticity field within an octant has two extrema 
of opposite sign. Assuming that the sign of the mean vorticity at the centre of the 
large flow cell is negative, then the vorticity has a minimum there. The vorticity 
along a line starting from this minimum towards the nearest wall increases 
monotonically to reach a positive maximum a t  the wall. It is interesting that the 
value of the wall maximum is more than twice the magnitude of the vorticity at the 
centre of the secondary flow cell. The Reynolds stress terms of the equation for this 
vorticity component, calculated from the simulation, attain their extrema in the 
viscous sublayer with substantial production of positive vorticity within the viscous 
sublayer. Viscous diffusion of the vorticity has been found to play a much more 
significant role than secondary convection. A theory on the flow structures that give 
rise to the observed mean flow is not yet available. 
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